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The fundamental theorem of arithmetic states that every positive
integer can be represented uniquely as the product of prime factors. An
integer n>1 shall accordingly be written

n — pl(llpzo.z . prOLI' (1)

where the p/'s are the distinct prime factors and o is the multiplicity
of p, (the number of times p, occurs in the prime factorization).

A positive integer is called a perfect number if it is equal to the
sum of all its positive divisors other than itself. The sum of divisors
of a number n with the prime factorization (1) is

p1a1+1_1 p20t2+1_1 prar+1_1 _ r p.(xi+1_1

p1'1 p2-1 pr-l B i=1 pi']- (2)

o(n) =

The condition for a perfect number may then be given by n = o(n) - n
or equivalently, o(n) = 2n.

Euclid argued that if 2P-1 is prime for p>1, then
P = 2r1(2°-1) (3)

is a perfect number. Euler showed later that all even perfect numbers
must be of this type (see [4]). The number 2°-1 is known as a
Mersenne prime and is denoted by M, asin [3]. All perfect numbers
known are even and the question of whether there is an odd perfect
number is still unanswered. There is no evidence to prove or disprove
the existence of an odd perfect number but if one does exist, it must be
greater than 10'% (see [1]).

For any positive integer m and any integer k satisfying 0<=k<=m,



the binomial coefficient (m k) is defined by

(k)= k!(nn11!—k)! )

Use will now be made of the configuration known as Pascal's Triangle in
which the binomial coefficient (m k) appears as the (k+1)* number in
the (m+1)* row, as in [5].
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Figure 1

The borders of the triangle are composed of ones; a number not on the
border is the sum of the two numbers nearest it in the row above.

All even perfect numbers can be shown to lie on the third diagonal
of Pascal's Triangle (see Figure 1). The restriction for m is that
it must be equal to a Mersenne prime plus one; that is, m=M _+1.
Setting k equal to 2 (since the third diagonal of Pascal's triangle is
k=2),

(M +1)! 2L 20(2-1)(20-2)! 22(20-1)
2IM +1-2)1 21(22)  2W2-2)! 2

(m k)= =2r1(20-1) = P,

which is an even perfect number by (3) above.

As in [5], we now note that each number in Pascal's triangle is the
sum of the numbers in the preceding diagonal (see Figure 2):



1 3 31
1 4@4 1

Figure 2
We have seen that all even perfect numbers are on the third diagonal
of Pascal's triangle. Hence, the second diagonal would generate the

perfect numbers. That is, every even perfect number is the sum of the
first 2°-1=M_ (Mersenne prime) numbers:

Mp
P=)i (5)
i=1
We now observe that the elements of the third diagonal are the

triangular numbers and every even perfect number is triangular in
shape (see [2]). (See Figure 3.)

The perfect number 6 with base M =3
Figure 3
According to Burton [1], there are 24 even perfect numbers known to

date (1976). The first 5 and their associated Mersenne primes are given
in Table 1 on the next page.



T T

2 3 6

3 7 28

5 31 496

7 127 8,128

13 8,191 33,550,336
Table 1

We now have several different ways of computing perfect numbers.
We must first compute Mersenne primes M_. Knowing the Mersenne
primes, we can:

(a) compute P=M (2*), using Euclid's formula,
Mp

(b) compute P =% i, summing up the first M, positive integers, or
i=1

(c) with m=M_+1 and k=2, compute P=(m k).

It is from the last item that we note all even perfect numbers are
on the third diagonal of Pascal's triangle.
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